Aceleradores circulares
Estos tipos de aceleradores poseen una ventaja añadida a los aceleradores lineales al usar campos magnéticos en combinación con los eléctricos, pudiendo conseguir aceleraciones mayores en espacios más reducidos. Además las partículas pueden permanecer confinadas en determinadas configuraciones teóricamente de forma indefinida.
Sin embargo poseen un límite a la energía que puede alcanzarse debido a la radiación sincrotrón que emiten las partículas cargadas al ser aceleradas. La emisión de esta radiación supone una pérdida de energía, que es mayor cuanto más grande es la aceleración impartida a la partícula. Al obligar a la partícula a describir una trayectoria circular realmente lo que se hace es acelerar la partícula, ya que la velocidad cambia su sentido, y de este modo es inevitable que pierda energía hasta igualar la que se le suministra, alcanzando una velocidad máxima.
Algunos aceleradores poseen instalaciones especiales que aprovechan esa radiación, a veces llamada luz sincrotrón. Esta radiación se utiliza como fuentes de Rayos X de alta energía, principalmente en estudios de materiales o de proteínas por espectroscopia de rayos X o por absorción de rayos X por la estructura fina (o espectrometría XAS).
Esta radiación es mayor cuando las partículas son más ligeras, por lo que se utilizan partículas muy ligeras (principalmente electrones) cuando se pretenden generar grandes cantidades de esta radiación, pero generalmente se aceleran partículas pesadas, protones o núcleos ionizados más pesados, que hacen que estos aceleradores puedan alcanzar mayores energías. Este es el caso del gran acelerador circular del CERN, donde el LEP, colisionador de electrones y positrones, se ha sustituido por el LHC, colisionador de hadrones.
Los aceleradores de partículas más grandes y potentes, como el RHIC, el LHC (está programada su puesta en marcha en el día 10 de septiembre de 2008) o el Tevatrón se utilizan en experimentos de física de partículas.
No hay comentarios:
Publicar un comentario