Utilización de Aceleradores en computación cuántica


El Sistema Orion es un acelerador por hardware diseñado especialmente para resolver un problema NP-completo concreto llamado modelo bidimensional Ising de un campo magnético. Está construido sobre un sistema de computación cuántica adiabático de 16 qubits. Está diseñado para que pueda usarse como módulo con cualquier aplicación que requiera resolver problemas NP-completos. Los qubits [bits cuánticos] están acoplados como se ve en la foto con otros qubits vecinos a través de un transformador de fluzo tuneable , con un total de 42 acopladores La temperatura base a la que opera es de 5 mK, es decir, 0,005 kelvins por encima del cero absoluto, lo cual es 500 veces más frío que el vacío intelestelar Usar el Sistema Orion es muy simple: basta programar la aplicación para que le pase el problema NP-completo a Orion cuando sea necesario resolverlo, el resto no requiere modificación. En la presentación se harán dos demostraciones: una que encuentra patrones en bases de datos de moléculas, otra más mundana que sirve para asignar asientos a gente según ciertas reglas.

Tipos de Aceleradores de Particulas


Aceleradores de mayores energías

Existen varios proyectos para superar las energías que alcanzan los nuevos aceleradores. Estos aceleradores se espera que sirvan para confirmar teorías como la Teoría de la gran unificación e incluso para la creación de agujeros negros que confirmarían la teoría de súper cuerdas.
Para 2015-2020 se espera que se construya el Colisionador lineal internacional, un enorme linac de 40 km de longitud, inicialmente de 500 GeV que se ampliarían hasta 1 TeV. Este acelerador utilizará un laser enfocado en un fotocátodo para la generación de electrones. En 2007 no se había decidido aún qué nación lo albergaría.
El Supercolisionador superconducto (SSC en inglés) era un proyecto de un sincrotrón de 87 km de longitud en Texas que alcanzaría los 20 TeV. Se abortó el proyecto en 1993.
Se cree que la aceleración de plasmas mediante láseres conseguirá un incremento espectacular en las eficiencias que se alcancen. [4] Estas técnicas han alcanzado ya aceleraciones de 200 GeV por metro, si bien en distancias de algunos centímetros, en comparación con los 0.1 GeV por metro que se consiguen con las radiofrecuencias.

Tipos de Aceleradores de Particulas


Aceleradores circulares

Estos tipos de aceleradores poseen una ventaja añadida a los aceleradores lineales al usar campos magnéticos en combinación con los eléctricos, pudiendo conseguir aceleraciones mayores en espacios más reducidos. Además las partículas pueden permanecer confinadas en determinadas configuraciones teóricamente de forma indefinida.
Sin embargo poseen un límite a la energía que puede alcanzarse debido a la radiación sincrotrón que emiten las partículas cargadas al ser aceleradas. La emisión de esta radiación supone una pérdida de energía, que es mayor cuanto más grande es la aceleración impartida a la partícula. Al obligar a la partícula a describir una trayectoria circular realmente lo que se hace es acelerar la partícula, ya que la velocidad cambia su sentido, y de este modo es inevitable que pierda energía hasta igualar la que se le suministra, alcanzando una velocidad máxima.
Algunos aceleradores poseen instalaciones especiales que aprovechan esa radiación, a veces llamada luz sincrotrón. Esta radiación se utiliza como fuentes de Rayos X de alta energía, principalmente en estudios de materiales o de proteínas por espectroscopia de rayos X o por absorción de rayos X por la estructura fina (o espectrometría XAS).
Esta radiación es mayor cuando las partículas son más ligeras, por lo que se utilizan partículas muy ligeras (principalmente electrones) cuando se pretenden generar grandes cantidades de esta radiación, pero generalmente se aceleran partículas pesadas, protones o núcleos ionizados más pesados, que hacen que estos aceleradores puedan alcanzar mayores energías. Este es el caso del gran acelerador circular del CERN, donde el LEP, colisionador de electrones y positrones, se ha sustituido por el LHC, colisionador de hadrones.
Los aceleradores de partículas más grandes y potentes, como el RHIC, el LHC (está programada su puesta en marcha en el día 10 de septiembre de 2008) o el Tevatrón se utilizan en experimentos de física de partículas.

Tipos de Aceleradores de Particulas

Aceleradores lineales

Los aceleradores lineales (muchas veces se usa el acrónimo en inglés LINAC) de altas energías utilizan un conjunto de placas o tubos situados en línea a los que se les aplica un campo eléctrico alterno. Cuando las partículas se aproximan a una placa se aceleran hacia ella al aplicar una polaridad opuesta a la suya. Justo cuando la traspasan, a través de un agujero practicado en la placa, la polaridad se invierte, de forma que en ese momento la placa repele la partícula, acelerándola por tanto hacia la siguiente placa. Generalmente no se acelera una sola partícula, sino un continuo de haces de partículas, de forma que se aplica a cada placa un potencial alterno cuidadosamente controlado de forma que se repita de forma continua el proceso para cada haz.
En los aceleradores de partículas más antiguos se usaba un generador de Cockcroft-Walton para la multiplicación del voltaje. Esta pieza del acelerador ayudó al desarrollo de la bomba atómica. Construido en 1937 por Philips de Eindhoven, se encuentra actualmente en el museo de ciencias naturales de Londres.
A medida que las faggotas se acercan a la velocidad de la luz, la velocidad de inversión de los campos eléctricos se hace tan alta que deben operar a frecuencias de microondas, y por eso, en muy altas energías, se utilizan cavidades resonantes de frecuencias de radio en lugar de placas.
Los tipos de aceleradores de corriente continua capaces de acelerar a las partículas hasta velocidades suficientemente altas como para causar reacciones nucleares son los generadores Cockcroft-Walton o los multiplicadores de potencial, que convierten una corriente alterna a continua de alto voltaje, o bien generadores Van de Graaf que utilizan electricidad estática transportada mediante cintas.
Estos aceleradores se usan en muchas ocasiones como primera etapa antes de introducir las partículas en los aceleradores circulares. El acelerador lineal más largo del mundo es el colisionador electrón-positrón Stanford Linear Accelerator (SLAC), de 3 km de longitud.
Estos aceleradores son los que se usan en radioterapia y radiocirugía. Estos aceleradores utilizan válvulas klistrón y una determinada configuración de campos magnéticos, produciendo haces de electrones de una energía de 6 a 30 millones de electronvoltios (MeV). En ciertas técnicas se utilizan directamente esos electrones, mientras que en otras se les hace colisionar contra un blanco de número atómico alto para producir haces de rayos X. La seguridad y fiabilidad de estos aparatos está haciendo retroceder a las antiguas unidades de cobaltoterapia.
Dos aplicaciones tecnológicas de importancia en las que se usan este tipo de aceleradores son la espalación para la generación de neutrones aplicables a los amplificadores de potencia para la transmutación de los isótopos radiactivos más peligrosos generados en la fisión.

Tipos de Aceleradores de Particulas



CLASIFICACIÓN DE
ACELERADORES DE PARTÍCULAS

Aceleradores de bajas energías

Al contrario de la creencia popular, los aceleradores de partículas no son aparatos exclusivos de laboratorios sofisticados, sino que también se encuentran muy presentes en la vida cotidiana de las personas, en forma de aceleradores de baja energía, ejemplos muy sencillos de estos aceleradores, de electrones principalmente, son los televisores o monitores de ordenador (los modelos antiguos que utilizan tubos de rayos catódicos, los cuales pueden considerarse aceleradores lineales de una sola etapa) o los aparatos de rayos X, que pueden encontrarse en las clínicas dentales o en los hospitales. Estos aceleradores de bajas energías utilizan un único par de electrodos a los que se les aplica una diferencia de potencial, directamente de algunos miles de voltios. En un aparato de rayos X se calienta un filamento metálico que se encuentra entre ambos electrodos mediante el paso de una corriente eléctrica, emitiendo de este modo de electrones. Esos electrones son acelerados en el campo eléctrico de este modo electrones. Esos electrones son acelerados en el campo eléctrico generado entre ambos electrodos hasta alcanzar el electrodo que se utiliza como productor de rayos X, fabricado con un metal de alto Z (por ejemplo el tungsteno). También se utilizan aceleradores de partículas de bajas energías, llamados implantadores de iones, para la fabricación de circuitos integrados.